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Comparing Experimentally-Measured Sand’s Times with
Concentrated Solution Theory Predictions in a Polymer Electrolyte
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Nitash P. Balsara1,2,3,7,z

1Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720,
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3Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720,
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America
5Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States of America
6Argonne Collaborative Center for Energy Storage Science, Argonne National Laboratory, Lemont, Illinois 60439, United
States of America
7Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United
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We compare the electrochemically measured Sand’s time, the time required for the cell potential to diverge when the applied
current density exceeds the limiting current, with theoretical predictions for a 0.47 M poly(ethylene oxide) (5 kg mol−1)/LiTFSI
electrolyte. The theoretical predictions are made using concentrated solution theory which accounts for both concentration
polarization and polymer motion, using independently measured parameters that depend on concentration, c: conductivity (κ), salt

diffusion coefficient (D), cationic transference number with respect to the solvent velocity (t 0
+), thermodynamic factor 1 ,

f

c

dln

dln( )+ ±

and partial molar volume of the salt (V ̅); f± is the mean molar activity coefficient of the salt. We find quantitative agreement
between experimental data and theoretical predictions. We derive a generalized analytical expression for Sand’s time for
electrolytes based on dilute solution theory. This expression correctly predicts the divergence of the Sand’s time at the limiting
current, in agreement with experimental data and concentrated solution theory predictions. When the applied current is large
compared to the limiting current, the analytical expression approaches the standard expression for Sand’s time used in the
literature.
© 2023 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/ad1470]
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List of Symbols

Symbol Description
D Salt diffusion coefficient (cm2/s)
t0
+ Cationic transference number with respect to the solvent

velocity
1

f

c

d ln

d ln
+ ± Thermodynamic factor

f± Activity coefficient
c Salt concentration (mole/liter)
c0 Solvent concentration (mole/liter)
Ri Interfacial resistance (Ohms)
A Interfacial area (cm2)
z+ Charge number of cation
R Gas constant (J/mol K)
T Temperature (K)
F Faraday’s constant (C/mol)
L Electrolyte thickness (μm)
tSand Sand’s time (min)
i Current density (mA/cm2)
iL Limiting current density (mA/cm2)
V Measured voltage (volts)
r Molar ratio of lithium ions to ethylene oxide units

(r = [Li+]/[EO])
V ̅ Partial molar volume (cm3/mol)
κ Ionic conductivity (S/cm)
φ Electric potential corrected for interfacial effects (volts)
ν Total number of ions

ν+ Number of cations produced from salt dissociation
ν− Number of anions produced from salt dissociation
ρ+ Current fraction

As current passes through a battery, salt concentration gradients
develop within the electrolyte.1 These gradients affect overall battery
performance and can lead to cell failure. Understanding these salt
concentration gradients is essential for identifying suitable electro-
lytes for various battery applications. Newman’s concentrated
solution theory provides a framework for predicting concentration
gradients within an electrolyte.2,3 For binary electrolytes, comprising
of a salt that dissociates into cations and anions, and a solvent (which
can either be a low molecular weight compound or a polymer),
predicting concentration gradients requires knowledge of three
transport parameters: conductivity (κ), salt diffusion coefficient
(D), and cationic transference number with respect to the solvent
velocity (t0

+), along with two thermodynamic properties: thermo-

dynamic factor 1 ,
f

c

dln

dln( )+ ± where c is the molar salt concentration

and f± is the salt activity coefficient, and molar volume of the salt
(V ̅).2–5 The experiments required to determine these parameters are
challenging. It is perhaps not surprising that full electrochemical
characterization, wherein the concentration dependence of all five
parameters has been determined, is limited to relatively few
electrolytes.3,6–17

The experiments required for full electrochemical characteriza-
tion utilize small applied current densities (in the range of μA/cm2).
While the results of these measurements give values for the relevant
transport and thermodynamic parameters, experiments at higherzE-mail: nbalsara@berkeley.edu

Journal of The Electrochemical Society, 2023 170 120524

https://orcid.org/0000-0002-8989-8077
https://orcid.org/0000-0002-4359-4975
https://orcid.org/0000-0002-0106-5565
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1149/1945-7111/ad1470
https://doi.org/10.1149/1945-7111/ad1470
mailto:nbalsara@berkeley.edu
https://crossmark.crossref.org/dialog/?doi=10.1149/1945-7111/ad1470&domain=pdf&date_stamp=2023-12-20


current densities are necessary to probe the electrolyte performance
at conditions relevant for battery applications. At sufficiently high
current densities (in the range of mA/cm2), the salt concentration in
the vicinity of the negative electrode can reach zero. The current
density at which this condition is obtained is called the limiting
current density of the electrolyte.5,10,18–21 If the thermodynamic and
transport properties of an electrolyte are independent of concentra-
tion, then the limiting current density is given by

i
FDc

L

2

1
, 1L ρ

=
( − )

[ ]
+

where iL is the limiting current density, F is Faraday’s constant,
ρ+ is the current fraction, defined as the ratio of the final to initial
current when the electrolyte is polarized in a symmetric cell, and
L is the electrolyte thickness.2 The importance of ρ+ was
established by Bruce and Vincent who showed that ρ+ = t0

+ in
the limit of infinite dilution.22 In this work, our efforts are focused
on characterizing electrolytes at current densities above the
limiting current density. In this regime, the measured electric
potential diverges at a time that is referred to as Sand’s time.23–25

This is the time required for the salt concentration at the negative
electrode to approach zero. In early work, Sand and coworkers
showed that this time was related to both the salt diffusion
coefficient and the transference number.25 If the thermodynamic
and transport properties of an electrolyte are independent of
concentration, then Sand’s time is given by

t D
Fc

i2 1
, 2Sand

2

⎜ ⎟
⎛
⎝

⎞
⎠

π
ρ

=
( − )

[ ]
+

where i is an applied current density above iL.
25–27

In this paper, we present data from measurements of Sand’s time
in a mixture of poly(ethylene oxide) (PEO), with number average
molecular weight of 5 kg mol−1, and lithium bis(trifluoromethane-
sulfonyl)imide (LiTFSI). The transport and thermodynamic para-
meters for this electrolyte have been reported in Refs. 7, 28, and 29
and can be found in Appendix A. This enables explicit calculation of
Sand’s time with no adjustable parameters. In a noteworthy
publication, Lee et al. measured the Sand’s time in a PEO/LiTFSI
electrolyte (4,000 kg mol−1) and interpreted their data in terms of a
simplified theory.30 In their theory, the transport and thermodynamic
properties were treated as constants (some were adjusted and some
were not), and the motion of the solvent molecules was ignored.30 It
is however well established that an applied electric field results in
the motion of solvent molecules (PEO in our case) which in turn
affects the motion of ions.31–33 Rigorous solution of the relevant
transport equations required determining both solvent velocity and
concentration as a function of space and time. The analysis presented
below is the first to include the effect of solvent motion and the
concentration-dependence of the transport and thermodynamic
properties of the electrolyte on Sand’s time. We compare predictions
and experimental data with no adjustable parameters. We find that
Eq. 2 does not accurately describe the dependence of our predictions
and measured tSand on i, as this equation is based on assumptions that
are only valid at i i .L≫ A universal expression for the dependence
of tSand on i is derived using dilute solution theory, which agrees
with the observed linear dependence of tSand on i. In the limit, at
i i ,L≫ this expression reduces to Eq. 2.

Methods

Electrolyte preparation.—Poly(ethylene oxide) (PEO) with a
molecular weight of 5 kg mol−1 (Polymer Source) was dried under
active evacuation for 2 d at 90 °C. Lithium bis(trifluoromethanesul-
fonyl)imide (LiTFSI) (Sigma Aldrich) was dried under active
evacuation for three days at 120 °C. Predetermined amounts of

PEO and LiTFSI were combined and mixed in anhydrous tetrahy-
drofuran (THF) (Sigma Aldrich) in a capped vial at 60 °C under
active stirring until fully dissolved. The cap was then removed, and
the THF evaporated off. The electrolytes were then dried at 90 °C
under active evacuation overnight to remove any remaining solvent.
Preparation of electrolytes was performed in an argon-filled
glovebox with water and oxygen levels below 2 ppm. The electro-
lytes used in this study all have the same salt concentration, r, the
ratio of lithium ions to ethylene oxide moieties (r = [Li+]/[EO]).
The r value chosen was r = 0.02, or 0.47 M.

Lithium symmetric cells and Sand’s time measurements.—
Lithium symmetric cells were constructed inside an argon-filled
glovebox with water and oxygen levels below 1 PPM. Lithium
electrodes were prepared using lithium foil (MTI Corp.) that was
first brushed then pressed with a mechanical press. The thickness of
these electrodes was measured using a micrometer. Next silicone
spacer material (VWR) of thicknesses 250 and 500 μm and an inner
diameter of 3.175 mm, was filled with PEO/LiTFSI electrolyte. The
lithium electrodes were pressed on each side of the electrolyte and
the total thickness of the stack was measured, and the thickness of
the electrolyte was calculated by subtracting the electrode thick-
nesses from the total stack thickness. Nickel tabs were attached on
each side of the stack, and the cell was sealed in laminated pouch
material.

Before electrochemical experiments were conducted, the cells
were annealed on a custom heating stage at 90 °C for three hours. All
electrochemical experiments were performed at 90 °C using a VMP3
Biologic potentiostat. Cells were first preconditioned by applying a
current density of 0.02 mA cm−2 for 3 h then allowing the cells to
relax at open circuit voltage (OCV) for 3 h, followed by impedance
measurements. The same current density was then applied in the
opposite direction followed by another period of relaxation and an
impedance measurement. This process was performed for 5 cycles to
form a stable solid electrolyte interface, which was determined by
observing the interfacial resistance of each cell and ensuring it
reached a constant value after multiple cycles. The resistance of the
cell was measured using electrochemical impedance spectroscopy
(EIS) with a frequency range of 1 MHz to 100 mHZ, and a sinus
amplitude of 40 mV.

Sand’s time measurements were performed by first taking an
impedance measurement, then polarizing the cell with an applied
current density, followed by an OCV step, and ending with an
impedance measurement. Each cell was polarized with length-
normalized current densities, iL, of 0.0075, 0.010, 0.0125, 0.015,
0.0175, and 0.020 mA cm−1.

Modeling.—We use Newman’s concentrated solution theory to
theoretically understand concentration and potential evolution in a
0.47 M PEO(5 kg mol−1)/LiTFSI electrolyte when polarized at
different current densities.2,32,34 The concentration dependence of
the relevant thermodynamic and transport properties have been
previously measured for this electrolyte (Table A·I) and their
continuous concentration-dependent functions (as plotted in Fig. 2
of Ref. 32) are used for the theoretical calculations.7,28,29,35 The
governing equations describing the evolution of ionic concentration
are:

c
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Note that x represents a moving interface attached to the left lithium-
electrolyte interface which strips when the ionic current flows in the
+x direction. The velocity of this moving interface is linked to the
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applied current density, i, and constant when the Li-electrolyte-Li
cell is polarized at constant current densities. Based on the c(x,t)
profile obtained by solving the aforementioned equations, the
electrolyte potential, Δφ, can be computed using concentration-
dependent conductivity, κ, cationic transference number, t ,0

+ and

thermodynamic factor, 1 ,
f

c

d ln

d ln( )+ ± as per the following expression:

i x
1

dx x L
L

0

0

∫ϕ ϕ ϕ
κ

Δ = − == =

RT

F
t

f

c
c

2
1 1

d ln

d ln
d ln . 5

c

c

0

x L

x 0

⎜ ⎟
⎛
⎝

⎞
⎠

∫+ ( − ) + [ ]+
±

=

=

Notice that the first term on the right is the ohmic drop, i.e., related
to finite ionic conductivity of the electrolyte, and the second term
represents the overpotential related to the concentration polarization
across the electrolyte thickness.

i x
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These expressions are numerically solved using the Finite Volume
Method (details are provided in Ref. 32). The current density, i, at
which the electrolyte is polarized explicitly appears in these
equations and additionally in the concentration boundary conditions
at both lithium-electrolyte interfaces:

D
c

c
t

i

F
1

d ln

d ln
1 . 80 0⎛

⎝
⎞
⎠

− − = ( − ) [ ]+

We have assumed that the reaction overpotentials are negligible
compared to the bulk overpotentials across the thick electrolytes
examined herein.

Results and Discussion

Sand’s time measurements are made by applying a constant
current density to a Li-electrolyte-Li cell and measuring the resulting
electric potential. The experimentally measured potential includes
the potential drop across the solid electrolyte interphase (SEI). Since
we are only interested in the potential drop across the electrolyte,
this contribution is subtracted. The potential of interest is defined as

t V t R iA, 9iϕ∆ ( ) = ( ) − [ ]

where V is the measured voltage, Ri is the interfacial resistance, and
A is the interfacial area. The resistance used for these calculations is
the interfacial resistance measured by ac impedance after polariza-
tion. The interfacial resistance of our electrolytes was typically an
order of magnitude smaller than the bulk resistance.

In Fig. 1, we show Δφ as a function of time, t, at various values of iL,
the length normalized current density. We prefer iL to i to account for the
fact that the electrolyte thickness in each of our cells is not identical, and
the characteristics of our symmetric cells are governed by the product, iL.
Figure 1a shows characteristic data collected from our electrochemical
experiments, for a cell with an electrolyte thickness of 576 μm. At each
value of iL the electric potential increases gradually at early times.
Beyond a characteristic time that decreases with increasing current
density, the potential rapidly approaches the cutoff potential of 1.5 V.

Equations 3–8 were solved using parameters for our PEO/LiTFSI
electrolyte. These parameters are given in Table A·I. Figure 1b shows the
calculated potential as a function of time modeled for a salt concentration
of 0.47M and a thickness L= 500 μm.32 The current density used in the
calculations were chosen to match the iL used for the experimental
measurements. At iL ⩽ 0.01 mA cm−1, the correspondence between
theory and experiment is nearly quantitative. At the smallest applied
current density, experiments show a divergence of cell potential while
theory does not. This discrepancy is well within the uncertainty of the
transport and thermodynamic parameters. The gray lines in Figs. 1a and
1b were used to determine Sand’s time. These lines reflect the time at
which the cell potential diverges in both theory and experiment.

Figure 2a shows the time dependence of Δφ for a typical calculation
(iL = 0.015 mA cm−1, L = 500 μm). The electric potential contains
two contributions: Δφ = Δφohmic+ Δφconcentration. Δφohmic is the
component of the potential due to the resistance of the electrolyte,
which is related to κ by Ohm’s law. Equation 6 can be written as

Figure 1. Electric potential, Δφ, plotted as a function of time, t, in response to length normalized current densities, iL. (a) Measured data from a 0.47 M PEO/
LiTFSI electrolyte with a thickness, L, of 576 μm and (b) predicted using concentrated solution theory for a 0.47 M PEO/LiTFSI electrolyte with L = 500 μm.
The colors of the curves in (b) correspond with the same values of iL listed in (a). Gray lines indicate the time at which the potential diverged each value of iL for
experiments and theory. All experimental measurements were made at 90 °C, and predictions utilize PEO/LiTFSI properties measured at 90 °C (Table A·I).
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. 10ohmic
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As the cell is polarized, the concentration varies across the cell,
and κavg reflects the average conductivity of the electrolyte.
Δφconcentration is obtained by subtracting Δφohmic from Δφ. In
Fig. 2a, Δφ (solid black line), Δφohmic (dashed black line), and
Δφconcentration (solid gray line) are plotted as a function of time. At
t = 0+, Δφ = Δφohmic. Salt concentration gradients grow with
increasing time, but this has a minimal effect on Δφohmic. At t = 0+,
Δφconcentration is zero. However, the growth of salt concentration
gradients is reflected in the increase in φconcentration. Figure 2b shows
the salt concentration at the negative electrode, cx=L, as a function of
time. As cx=L smoothly approaches a value close to zero at t = 0.5 h,

Δφconcentrationdiverges. This connection between potential divergence
and concentration was first recognized by Sand.25

Sand’s time depends on two parameters, the applied current
density, i, and electrolyte thickness, L. Rearranging Eq. 2 gives

t

L
D
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iL2 1
, 11Sand

2

2
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π
ρ

=
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which shows that it is convenient to consider the dependence of
the Sand’s time on the length normalized current density, iL, and L.
We use the model to predict the effect of L on tSand at iL =
0.010 mA cm−1. These results are shown in Fig. 3a. As expected, tSand
increases with increasing L. At L= 100 μm tSand is 0.3 h, while at L=
1000 μm tSand = 4.7 h. In Fig. 1a we reported the Sand’s time at iL =
0.01 mA cm−1 for L= 576 μm. We repeated this experiment for three

Figure 2. (a) Predicted electric potential (solid black line), Δφ, and the components of the potential due to ohmic effects (dashed black line), Δφohmic, and
concentration polarization (solid gray line), Δφconcentration, as functions of time, t. (b) Predicted lithium salt concentration at the negative electrode, cx=L, versus t.
These predictions are for a 0.47 M PEO/LiTFSI electrolyte, L = 500 μm, polarized at iL = 0.015 mA cm−1. Predictions utilize PEO/LiTFSI properties measured
at 90 °C (Table A·I).

Figure 3. (a) Sand’s times, tSand, plotted for various 0.47 M PEO/LiTFSI electrolyte thicknesses in response to polarization at iL = 0.010 mA cm−1. (b) Length
normalized Sand’s times, tSand/L

2, plotted for various 0.47 M PEO/LiTFSI electrolyte thicknesses. The black line indicates the value of tSand/L
2 predicted from

Eq. 11. Gray bars indicate predictions from concentrated solution theory, and red bars indicate the average Sand’s time from experimental measurements. All
experimental measurements were made at 90 °C, and predictions utilize PEO/LiTFSI properties measured at 90 °C (Table A·I).
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independent cells with an average value of L = 600 μm. In addition,
we studied two cells with an average value of L = 280 μm with the
same value of iL (0.01 mA cm−1). The experimental results are also
shown in Fig. 3a. The experiments and theoretical predictions are in
quantitative agreement (within the uncertainty of the transport and
thermodynamic parameters used in the calculations).

Figure 3b shows the same results but plotted in the format
suggested by Eq. 11. Here we show tSand/L

2 as a function of L for a
fixed iL= 0.01 mA cm−1. Also shown in Fig. 3b is the value from
Eq. 11, with parameters for our 0.47 M PEO/LiTFSI electrolyte (D =
7.8 × 10−8 cm2/s, ρ+ = 0.15). Calculations based on concentrated
solution theory approach Eq. 11 as L is increased from 100 to
1000 μm. The value of tSand/L

2 from Eq. 11 is 484 h/cm2. The
experimental data obtained at two different thicknesses are reason-
ably consistent with theoretical predictions.

The Sand’s time experiments were conducted at different values
of iL. Figure 4 shows these results on a plot of L2/tSand versus iL for
electrolyte thicknesses in the vicinity of 280 and 600 μm where the
gray circles represent the average value of L2/tSand and the error bars
represent the standard deviation. Also shown in this figure are
theoretical calculations for L = 500 μm (black rhombuses). Note
that the theoretically predicted L2/tSandis a weak function of L. We
see that L2/tSand is a linear function of iL. By fitting the data in Fig. 4.
to a line, we can identify the value of iL at which L2/tSand approaches
zero, or iL → iLL. In other words, the limiting current density is the
current density at which the Sand’s time approaches infinity. The
slope and intercept of a linear fit of the experimental data are 0.678
and −3.53 × 10−3 respectively and 0.689 and −5.01 × 10−3 for
concentrated solution theory predictions. This calculation results in
iLL values of 0.0052 ± 0.001 mA cm−1 for the experimental data and
0.0073 ± 0.0007 mA cm−1 for the theoretical predictions. The error
of our calculations is determined through propagation of error of the
coefficients from our linear fits. It is challenging to directly measure
iL in 5 kg mol−1 PEO/LiTFSI electrolytes, as the low molecular
weight provides little resistance to the growth of dendrites.36–40 The

large polarization times required for limiting current density
measurements correspond with high cell failure rates.18–21,41,42 The
methodology based on Sand’s time provides a convenient approach
for measuring limiting current as it uses much shorter polarization
times which are less likely to be affected by dendrite growth.

The standard equation for analyzing Sand’s time data, Eq. 2, is
inconsistent with both the theoretical calculations and experimental
data presented in Fig. 4. It can readily be seen that Eq. 2 predicts that
tSand →∞ as i 0,→ while our model predicts that that tSand →∞ as
i i .L→ This discrepancy arises because of the simplifying assump-
tions made to arrive at Eq. 2. In particular, this equation is based on
the simplifying assumptions that (1) the transport parameters are
independent of concentration, and (2) i iL≫ and in this limit, the
concentration gradients are restricted to narrow regions near the
electrode. In this limit, the electrolyte concentration in the center of
the cell is uniform as depicted in Fig. 5a. However, as i approaches
iL, the second simplification is not valid and the concentration
gradients are nonnegligible throughout the cell (Fig. 5a). In
Appendix C, we derive a general expression for the Sand’s time
for an electrolyte with concentration-independent transport proper-
ties that is valid as i approaches iL and in the limit, i i .L≫ The
general dependence of tSand on i is given by:

i

i
e1 8

1
1 . 12

L n n

Dt

L

1
2

n
2 Sand

2
⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠

⎛
⎝

⎞
⎠∑

β
= − [ ]β

=

∞
−

where n2 1nβ π= ( − ) is the Eigen value. Equation 12 is a nonlinear
equation that can be solved for tSand if i i ,L/ D and L are known. The
solution to Eq. 12 can be represented by a single curve if i iL/ is
plotted versus L Dt .Sand

2/( ) This is shown in Fig. 5c. Equation 2 can
be rewritten as

Dt

L

i

i16
, 13Sand L

2

2
⎛
⎝

⎞
⎠

π= [ ]

and this equation is also shown in Fig. 5b. In the regime i i 1.5,L/ >
Eqs. 12 and 13 are indistinguishable, tSand i .2∝ − At lower current
densities, however, there are significant differences between the two
equations. In particular, Eq. 13 gives nonzero values for tSand in the
regime i i 1L/ < which are unphysical. In contrast, Eq. 12 predicts
that tSand is a linear function of i ,1− and tSand →∞ as i i .L→

In Fig. 5c, we compare the predictions of Eq. 12 with
both experiments and the full simulations. Equation 12 is shown
as a continuous curve (using c 0.47M= properties D 7.8= ×
10 cm s8 2/− and 0.15ρ =+ ). The quantitative difference between
the detailed simulations and the analytical trends are due to the
concentration-dependent electrolyte properties and the concentrated
solution theory description of electrolyte transport in the detailed
simulations.

Conclusions

We present an approach for calculating Sand’s time in electrolytes
using concentrated solution theory. The theory is rigorous and
accounts for both concentration polarization and motion of all three
species, the cation, the anion, and the solvent (a polymer in our case).
Using this theory requires the knowledge of three transport para-

meters: κ, D, t ,0
+ and two thermodynamic parameters:1

f

c

dln

dln
+ ± andV .̅

All five parameters depend on concentration. We present a limited test
of the theory using experimentally determined Sand’s time of a
0.47 M PEO(5 kg mol−1)/LiTFSI electrolyte. We examine the effects
of both current density and electrolyte thickness on Sand’s time. The
experimental data are in excellent agreement with the rigorous
theoretical calculations. This agreement is obtained without resorting
to any adjustable parameters. We derive an analytical expression for
tSand that is valid if the transport parameters are independent of
concentration, regardless of the ratio i i .L/ The rigorous calculations are

Figure 4. Length normalized inverse Sand’s time, L2/tSand, plotted as a
function of length normalized current density, iL. The data is reported from
experimental cells with nominal thicknesses of 280 μm and 600 μm where
the gray circles represent the average value of L2/tSand and the error bars
represent the standard deviation and predictions from concentrated solution
theory for a cell with a thickness of 500 μm (black rhombuses). The gray
dashed line is a linear fit of the experimental data, and the black dashed line
is a linear fit of predicted Sand’s time. All experimental measurements were
made at 90 °C, and predictions utilize PEO/LiTFSI properties measured at
90 °C (Table A·I).
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in reasonable agreement with the analytical expression. The electro-
lyte examined in this work is sufficiently dilute, and results obtained
using the rigorous theory are not very different from simplified
models based on dilute solution theory. In the future, we plan to test
the theory using experiments on more concentrated electrolytes. These
experiments are challenging due to the formation of lithium dendrites
at currents exceeding the limiting current. Efforts to resolve these
challenges are currently underway.
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Appendix A

A.1. PEO/LiTFSI properties

Figure 5. (a) A schematic diagram representing different regimes of electrolyte polarization at varying current densities, i, relative to the limiting current density,
iL. In the limit of very large currents, i.e., i i ,L≫ the salt concentration gradients are close to the two electrodes and Eq. 13 is valid if the transport properties are
concentration independent. When i is comparable to iL, the concentration gradients are finite throughout the cell and the more general Eq. 12 is applicable. (b)
presents the analytical solutions for Sand’s time, tSand, in the two current density regimes: i iL≫ (Eq. 13) and i iL≳ (Eq. 12). (c) presents Eq. 12 with the full
simulation (diamonds) and experimental data (circles). L is the electrolyte thickness and D is the diffusion coefficient.
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Appendix B

B.1. Literature derivation for Sand's time, i iL≫ .—The
electrodeposition literature uses Eq. 2 to prescribe the Sand time,
t ,Sand to represent the time it takes for the concentration cations to
drop to zero at the plating electrode. The corresponding governing
equation to describe salt polarization,

c

t
D

c

x
, B 1

2

2

∂
∂

= ∂
∂

[ · ]

assumes that the electrolyte behaves as a dilute solution and its
properties are constant (in contrast to the full set of concentrated
solution theory governing equations, Eqs. 3–8). Equation B·1 is
solved subject to the boundary conditions

D
c

x

i

F
1 , B 2

x 0
ρ− ∂

∂
= ( − ) [ · ]

=
+

c x t c, , B 3avg( → ∞ ) = [ · ]

and initial condition

c x t c, 0 . B 4avg( = ) = [ · ]

Note that Eq. B·2 uses the dilute solution theory transference
number, .ρ+ Equation B·3 implicitly assumes that the concentration
gradients manifest over a short distance, L 2,δ ≪ / such that the
concentration in the center of the cell is fairly invariant and same as
the initial concentration. Such an assumption can only be justified
for current densities, i, much larger than the (dilute solution theory-
based) limiting current densities, i ,L defined in Eq. 1.

Equations B·1 to B·4 can be alternatively expressed in terms of
the concentration change, c x t, ,′( ) relative to the initial uniform
concentration.

c

t
D

c

x
, B 5

2

2

∂ ′
∂

= ∂ ′
∂

[ · ]

subject to the boundary conditions

D
c

x

i

F
1 , B 6

x 0

ρ− ∂ ′
∂

= ( − ) [ · ]
=

+

c x t, 0, B 7′( → ∞ ) = [ · ]

and initial condition

c x t, 0 0. B 8′( = ) = [ · ]

Using the initial condition B·8, Eqs. B·5 to B·7 can be expressed in
the Laplace s-domain as

x

d

d
, B 9

2

2
2 λ= [ · ]

subject to the boundary conditions

D
x

i

Fs

d

d
1 , B 10

x 0

 ρ− = ( − ) [ · ]
=

+

x t, 0. B 11( → ∞ ) = [ · ]

Here

x s e c x t t, , d , B 12st

0
 ∫ ′( ) = ( ) [ · ]

∞
−

is the Laplace transformed concentration, and,

s

D
. B 132λ = [ · ]

Equation B·10 can be easily solved for x s,( ) to give

x s
s

i

F
e, 1 . B 14x

2
 λ ρ( ) = ( − ) [ · ]λ

+
−

Using inverse Laplace transform tables, x s,( ) can be transformed
back to the time domain:

c x t,′( )

D

i
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e

x

D

x

Dt

1
1 2 erfc

2
, B 15

x
DT4

2

⎜ ⎟
⎧
⎨⎩

⎛
⎝

⎞
⎠

⎫
⎬⎭

ρ
π

= ( − ) − [ · ]+
−

where xerfc( ) is complementary error function in x. Equivalently, the
spatiotemporal variation of the salt concentration is:

c x t c, avg( ) =

D
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. B 16

x
DT4

2

⎜ ⎟
⎧
⎨⎩

⎛
⎝

⎞
⎠

⎫
⎬⎭

ρ
π

+ ( − ) − [ · ]+
−

As mentioned earlier, for i i ,L≫ the salt concentration on the plating
electrode, i.e., x L,= drop to zero. Equivalently, the salt concentration
on the stripping electrode, i.e., x 0,= reaches c2 .avg Accordingly,
substituting x 0= and c x t c0, 2 ,avg( = ) = in Eq. B·16 gives

Table A·I. Properties of PEO/LiTFSI electrolytes at 90 °C, taken from Refs. 7, 28, and 29.

c (M) ρ (g/cm3) t 0
+ κ (S/cm) D (cm2/s) 1

f

c

dln

d ln
+ ± ρ+

0.25 1.160 0.07 2.7 × 10−4 6.0 × 10−8 0.45 0.18
0.47 1.180 0.23 7.5 × 10−4 7.8 × 10−8 0.75 0.15
0.87 1.210 0.40 1.8 × 10−3 1.0 × 10−7 1.93 0.11
1.20 1.230 0.33 2.0 × 10−3 1.3 × 10−7 2.69 0.11
1.59 1.330 0.43 2.2 × 10−3 1.1 × 10−7 4.24 0.10
1.87 1.365 0.20 1.3 × 10−3 8.4 × 10−8 3.78 0.09
2.11 1.38 0.08 1.1 × 10−3 7.0 × 10−8 3.92 0.08
2.38 1.43 −0.08 9.9 × 10−4 5.8 × 10−8 3.93 0.07
2.58 1.45 −0.38 1.3 × 10−3 9.4 × 10−8 3.51 0.06
2.76 1.47 0.10 1.6 × 10−3 9.0 × 10−8 6.03 0.07
3.05 1.52 0.41 1.2 × 10−4 6.5 × 10−8 10.84 0.10
3.36 1.58 0.33 6.4 × 10−4 6.3 × 10−8 10.89 0.16
3.49 1.57 0.18 4.0 × 10−4 5.9 × 10−8 10.06 0.18
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Equation B·17 can be rearranged to show
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, B 18Sand
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π
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+

which is identical to Eq. 2 used in the literature. Using the definition
of the limiting current density based on dilute solution theory at
constant properties, i.e., Eq. 1, Eq. B·18 can be reexpressed as
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L
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i16
. B 19LSand
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2
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⎝

⎞
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π= [ · ]

Note that Dt LSand
2/ can be thought of a dimensionless Sand time.

Appendix C

C.1. Sand's time for any overlimiting current densities,
i iL⩾ .—Given the boundary condition Eq. B·3, the Sand time
expressions (Eqs. B·18 and B·19) are only valid for current densities
much larger than the limiting values. This boundary condition can be
replaced with

c x
L

t c
2

, , C 1avg⎛
⎝

⎞
⎠

= = [ · ]

to obtain a universally valid Sand time expression. Following similar
steps as before, one can show that the solution of governing Eq. B·1
subject to boundary conditions B2 and C1 and initial condition B4 is

c x t c, avg( ) =
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where n2 1nβ π= ( − ) is the Eigen value.
Same as before Eq. C·2 can be used to estimate the time, t ,Sand it

takes for the salt concentration to reach c2 avg at the stripping
electrode (identical to the time it takes for the salt concentration to
drop to zero at the plating electrode).
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i
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−

It can be shown that for i i ,L≫ Eq. C·3 collapses to Eq. B·19 as
expected. Note that while Eq. B·19 explicitly expresses tSand in terms
of electrolyte properties and operating conditions, Eq. C·3 is an
implicit expression for tSand in terms of the same electrolyte
properties and operating conditions. An additional complexity is
Eq. C·3 is an infinite convergent sum.
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